Связанные понятия
Уравнение теплопроводности — дифференциальное уравнение в частных производных второго порядка, которое описывает распределение температуры в заданной области пространства и ее изменение во времени.
Корреляционная функция — функция времени и пространственных координат, которая задает корреляцию в системах со случайными процессами.
Тензор электромагнитного поля — это антисимметричный дважды ковариантный тензор, являющийся обобщением напряжённости электрического и индукции магнитного поля для произвольных преобразований координат. Он используется для инвариантной формулировки уравнений электродинамики, в частности, с его помощью можно легко обобщить электродинамику на случай наличия гравитационного поля.
Константа взаимодействия или константа связи — параметр в квантовой теории поля, определяющий силу (интенсивность) взаимодействия частиц или полей. Константа взаимодействия связана с вершинами на диаграмме Фейнмана.
Сте́пени свобо́ды — характеристики движения механической системы. Число степеней свободы определяет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания состояния механической системы. Строгое теоретико-механическое определение: число степеней свободы механической системы есть размерность пространства её состояний с учётом наложенных связей.
В квантовой механике импульс, как и все другие наблюдаемые физические величины, определяется как оператор, который действует на волновую функцию.
Подробнее: Оператор импульса
Гармонический осциллятор в квантовой механике представляет собой квантовый аналог простого гармонического осциллятора, при этом рассматривают не силы, действующие на частицу, а гамильтониан, то есть полную энергию гармонического осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.
Анализ размерности (чаще говорят «соображения размерности» или «метрические соображения») — инструмент, используемый в физике, химии, технике и нескольких направлениях экономики для построения обоснованных гипотез о взаимосвязи различных параметров сложной системы. Неоднократно применялся физиками на интуитивном уровне не позже XIX века.
Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических...
Статистическим ансамблем физической системы называется набор всевозможных состояний данной системы, отвечающих определённым критериям. Примерами статистического ансамбля являются...
Подробнее: Статистический ансамбль
Адиабатический инвариант — физическая величина, которая не меняется при плавном изменении некоторых параметров физической системы - таком, что характерное время этого изменения гораздо больше характерного времени процессов, происходящих в самой системе.
Соотноше́ния Кра́мерса — Кро́нига — интегральная связь между действительной и мнимой частями любой комплексной функции, аналитичной в верхней полуплоскости. Часто используются в физике для описания связи действительной и мнимой частей функции отклика физической системы, поскольку аналитичность функции отклика подразумевает, что система удовлетворяет принципу причинности, и наоборот . В частности, соотношения Крамерса — Кронига выражают связь между действительной и мнимой частями диэлектрической проницаемости...
Теория среднего поля или теория самосогласованного поля — подход к изучению поведения больших и сложных стохастических систем в физике и теории вероятностей через исследование простых моделей. Такие модели рассматривают многочисленные малые компоненты, которые взаимодействуют между собой. Влияние других индивидуальных компонент на заданный объект аппроксимируется усредненным эффектом, благодаря чему задача многих тел сводится к одночастичной задаче.
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.
Подробнее: Особая точка (дифференциальные уравнения)
Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины. Уравнения непрерывности — (сильная) локальная форма законов сохранения.
Подробнее: Уравнение непрерывности
Уравне́ние движе́ния (уравнения движения) — уравнение или система уравнений, задающие закон эволюции механической или динамической системы (например, поля) во времени и пространстве.
Принцип суперпозиции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит...
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики...
Магнитоста́тика — раздел классической электродинамики, изучающий взаимодействие постоянных токов посредством создаваемого ими постоянного магнитного поля и способы расчета магнитного поля в этом случае. Под случаем магнитостатики или приближением магнитостатики понимают выполнение этих условий (постоянства токов и полей — или достаточно медленное их изменение со временем), чтобы можно было пользоваться методами магнитостатики в качестве практически точных или хотя бы приближенных. Магнитостатика...
Квазиклассическое приближение , также известное как метод ВКБ (Вентцеля — Крамерса — Бриллюэна) — самый известный пример квазиклассического вычисления в квантовой механике, в котором волновая функция представлена как показательная функция, квазиклассически расширенная, а затем или амплитуда, или фаза медленно изменяются. Этот метод назван в честь физиков Г. Вентцеля, Х.А. Крамерса и Л. Бриллюэна, которые развили этот метод в 1926 году независимо друг от друга. В 1923 математик Гарольд Джеффри развил...
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Втори́чное квантова́ние (каноническое квантование) — метод описания многочастичных квантовомеханических систем. Наиболее часто этот метод применяется для задач квантовой теории поля и в многочастичных задачах физики конденсированных сред.
Фу́нкция Гри́на — функция, используемая для решения неоднородных дифференциальных уравнений с граничными условиями (неоднородной краевой задачи). Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Блочный Гамильтониан — гамильтониан, описывающий критическое поведение магнетика вблизи точки фазового перехода второго рода.
Линеаризация (от лат. linearis — линейный) — один из методов приближённого представления замкнутых нелинейных систем, при котором исследование нелинейной системы заменяется анализом линейной системы, в некотором смысле эквивалентной исходной. Методы линеаризации имеют ограниченный характер, т. е. эквивалентность исходной нелинейной системы и её линейного приближения сохраняется лишь для ограниченных пространственных или временных масштабов системы, либо для определенных процессов, причём, если система...
Метод разделения переменных — метод решения дифференциальных уравнений, основанный на алгебраическом преобразовании исходного уравнения к равенству двух выражений, зависящих от разных независимых переменных.
Равнове́сный тепловой процесс — тепловой процесс, в котором система проходит непрерывный ряд бесконечно близких равновесных термодинамических состояний.
Параболические уравнения — класс дифференциальных уравнений в частных производных. Один из видов уравнений, описывающих нестационарные процессы.
Подробнее: Параболическое уравнение
Квазистатический процесс в термодинамике — идеализированный процесс, состоящий из непрерывно следующих друг за другом квазистатических состояний, в которых характеризующие систему термодинамические величины за время наблюдения не изменяются. Если каждое такое квазистатическое состояние системы близко к состоянию равновесия и, следовательно, систему в каждый момент времени можно считать находящейся в термодинамическом равновесии, то такие процессы называют равновесными, или, точнее, квазиравновесными...
Сплошна́я среда ́ — механическая система, обладающая бесконечным числом внутренних степеней свободы. Её движение в пространстве, в отличие от других механических систем, описывается не координатами и скоростями отдельных частиц, а скалярным полем плотности и векторным полем скоростей. В зависимости от задач, к этим полям могут добавляться поля других физических величин (концентрация, температура, поляризованность и др.)
Спектр оператора — множество чисел, характеризующее линейный оператор. Применяется в линейной алгебре, функциональном анализе и квантовой механике.
Матрица плотности (оператор плотности, оператор матрица плотности, статистический оператор) — один из способов описания состояния квантовомеханической системы. В отличие от волновой функции, пригодной лишь для описания чистых состояний, оператор плотности в равной мере может задавать как чистые, так и смешанные состояния. Основанный на понятии оператора плотности формализм был предложен независимо Л. Д. Ландау и Дж. фон Нейманом в 1927 году, и Ф. Блохом в 1946 году.
В гамильтоновой механике
каноническое преобразование (также контактное преобразование) — это преобразование канонических переменных, не меняющее общий вид уравнений Гамильтона для любого гамильтониана. Канонические преобразования могут быть введены и в квантовом случае как не меняющие вид уравнений Гейзенберга. Они позволяют свести задачу с определённым гамильтонианом к задаче с более простым гамильтонианом как в классическом, так и в квантовом случае. Канонические преобразования образуют группу...
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Стационарность или постоянство — свойство процесса не менять свои характеристики со временем. Понятие используется в нескольких разделах науки.
Принцип общей ковариантности — принцип, утверждающий, что уравнения, описывающие физические явления в различных системах координат, должны иметь в них одинаковую форму. Такие уравнения называют общековариантными. Примером в ньютоновской механике являются уравнения движения в неинерциальных системах отсчёта, включающие в себя силы инерции.
Винеровский процесс в теории случайных процессов — это математическая модель броуновского движения или случайного блуждания с непрерывным временем.
Фазовое пространство в математике и физике — пространство, каждая точка которого соответствует одному и только одному состоянию из множества всех возможных состояний системы. Точка пространства, соответствующая состоянию системы называется «изображающей» или «представляющей» для него. Таким образом, изменению состояний системы, — т.е. её динамике — можно сопоставить движение изображающей точки; траекторию этой точки называют фазовой траекторией (следует отметить, что она не тождествлена действительной...
Разностная схема — это конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия (например краевые условия и/или начальное распределение). Таким образом, разностные схемы применяются для сведения дифференциальной задачи, имеющей континуальный характер, к конечной системе уравнений, численное решение которых принципиально возможно на вычислительных машинах. Алгебраические уравнения, поставленные...
Квантовый вихрь (англ. quantum vortex) — топологический дефект, который проявляется в сверхтекучей жидкости и сверхпроводниках. Квантование циркуляции скорости в сверхпроводящих жидкостях отличается от квантования в сверхпроводниках, но сохраняется ключевое подобие, которое состоит в топологичности дефектов, а также в том, что они квантуются.
Термодинами́ческая фу́нкция состоя́ния — в термодинамике некая функция, зависящая от нескольких независимых параметров, которые однозначно определяют состояние термодинамической системы. Значение термодинамической функции состояния зависит только от состояния термодинамической системы и не зависит от того, как система пришла в это состояние. Частным случаем функций состояний являются термодинамические потенциалы.
Быстрота ́ (англ. rapidity, иногда применяются также термины гиперскорость и угол лоренцева поворота) — в релятивистской кинематике монотонно возрастающая функция скорости, которая стремится к бесконечности, когда скорость стремится к скорости света. В отличие от скорости, для которой закон сложения нетривиален, для быстроты характерен простой закон сложения («быстрота аддитивна»). Поэтому в задачах, связанных с релятивистскими движениями (например, кинематика реакций частиц в физике высоких энергий...
Главным образом, интерес к вопросу распространения волн в случайно-неоднородных средах (какой является, например, атмосфера) можно объяснить бурным развитием спутниковых технологий. В этом случае становится важной задача расчета характеристик (например, амплитуды) волны прошедшей через среду и установления их связей с параметром неоднородности среды. Важную роль здесь и играет функция Грина для случайно-неоднородной среды, зная которую можно определить эти характеристики. Рассматривается прохождение...
Подробнее: Функция Грина для случайно-неоднородной среды
Математические основы квантовой механики — принятый в квантовой механике способ математического моделирования квантовомеханических явлений, позволяющий вычислять численные значения наблюдаемых в квантовой механике величин. Были созданы Луи де-Бройлем (открытие волн материи), В. Гейзенбергом (создание матричной механики, открытие принципа неопределённости), Э. Шрёдингером (уравнение Шрёдингера), Н. Бором (формулировка принципа дополнительности). Завершил создание математических основ квантовой механики...
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
Плотность состояний — величина, определяющая количество энергетических уровней в интервале энергий на единицу объёма в трёхмерном случае (на единицу площади — в двумерном случае). Является важным параметром в статистической физике и физике твёрдого тела. Термин может применяться к фотонам, электронам, квазичастицам в твёрдом теле и т. п. Применяется только для одночастичных задач, то есть для систем где можно пренебречь взаимодействием (невзаимодействующие частицы) или добавить взаимодействие в качестве...
Предельный цикл — это один из возможных вариантов стационарного состояния системы в теории динамических систем и дифференциальных уравнений; предельным циклом векторного поля на фазовой плоскости или, более обобщённо, на каком-либо двумерном многообразии называется замкнутая (периодическая) траектория этого векторного поля, в окрестности которой нет других периодических траекторий. Эквивалентным является утверждение, что всякая достаточно близкая к предельному циклу траектория стремится к нему либо...